Fireball | Click and drag to rotate, mouse wheel to zoom.
Using WebGL Noise, random function and three.js

More experiments with Perlin noise

Vertex displacement using GLSL

) // Version: 2011-10-11 // // Many thanks to Ian McEwan of Ashima Arts for the // ideas for permutation and gradient selection. // // Copyright (c) 2011 Stefan Gustavson. All rights reserved. // Distributed under the MIT license. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec3 fade(vec3 t) { return t*t*t*(t*(t*6.0-15.0)+10.0); } // Classic Perlin noise float cnoise(vec3 P) { vec3 Pi0 = floor(P); // Integer part for indexing vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1 Pi0 = mod289(Pi0); Pi1 = mod289(Pi1); vec3 Pf0 = fract(P); // Fractional part for interpolation vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); vec4 iy = vec4(Pi0.yy, Pi1.yy); vec4 iz0 = Pi0.zzzz; vec4 iz1 = Pi1.zzzz; vec4 ixy = permute(permute(ix) + iy); vec4 ixy0 = permute(ixy + iz0); vec4 ixy1 = permute(ixy + iz1); vec4 gx0 = ixy0 * (1.0 / 7.0); vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5; gx0 = fract(gx0); vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); vec4 sz0 = step(gz0, vec4(0.0)); gx0 -= sz0 * (step(0.0, gx0) - 0.5); gy0 -= sz0 * (step(0.0, gy0) - 0.5); vec4 gx1 = ixy1 * (1.0 / 7.0); vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5; gx1 = fract(gx1); vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); vec4 sz1 = step(gz1, vec4(0.0)); gx1 -= sz1 * (step(0.0, gx1) - 0.5); gy1 -= sz1 * (step(0.0, gy1) - 0.5); vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; float n000 = dot(g000, Pf0); float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); float n111 = dot(g111, Pf1); vec3 fade_xyz = fade(Pf0); vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return 2.2 * n_xyz; } // Classic Perlin noise, periodic variant float pnoise(vec3 P, vec3 rep) { vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period Pi0 = mod289(Pi0); Pi1 = mod289(Pi1); vec3 Pf0 = fract(P); // Fractional part for interpolation vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); vec4 iy = vec4(Pi0.yy, Pi1.yy); vec4 iz0 = Pi0.zzzz; vec4 iz1 = Pi1.zzzz; vec4 ixy = permute(permute(ix) + iy); vec4 ixy0 = permute(ixy + iz0); vec4 ixy1 = permute(ixy + iz1); vec4 gx0 = ixy0 * (1.0 / 7.0); vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5; gx0 = fract(gx0); vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); vec4 sz0 = step(gz0, vec4(0.0)); gx0 -= sz0 * (step(0.0, gx0) - 0.5); gy0 -= sz0 * (step(0.0, gy0) - 0.5); vec4 gx1 = ixy1 * (1.0 / 7.0); vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5; gx1 = fract(gx1); vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); vec4 sz1 = step(gz1, vec4(0.0)); gx1 -= sz1 * (step(0.0, gx1) - 0.5); gy1 -= sz1 * (step(0.0, gy1) - 0.5); vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; float n000 = dot(g000, Pf0); float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); float n111 = dot(g111, Pf1); vec3 fade_xyz = fade(Pf0); vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return 2.2 * n_xyz; } varying vec2 vUv; varying vec3 vReflect; varying vec3 pos; varying float ao; uniform float time; uniform float weight; varying float d; float stripes( float x, float f) { float PI = 3.14159265358979323846264; float t = .5 + .5 * sin( f * 2.0 * PI * x); return t * t - .5; } float turbulence( vec3 p ) { float w = 100.0; float t = -.5; for (float f = 1.0 ; f <= 10.0 ; f++ ){ float power = pow( 2.0, f ); t += abs( pnoise( vec3( power * p ), vec3( 10.0, 10.0, 10.0 ) ) / power ); } return t; } void main() { vUv = uv; vec4 mPosition = objectMatrix * vec4( position, 1.0 ); vec3 nWorld = normalize( mat3( objectMatrix[0].xyz, objectMatrix[1].xyz, objectMatrix[2].xyz ) * normal ); vReflect = normalize( reflect( normalize( mPosition.xyz - cameraPosition ), nWorld ) ); pos = position; //float noise = .3 * pnoise( 8.0 * vec3( normal ) ); float noise = 10.0 * -.10 * turbulence( .5 * normal + time ); //float noise = - stripes( normal.x + 2.0 * turbulence( normal ), 1.6 ); float displacement = - weight * noise; displacement += 5.0 * pnoise( 0.05 * position + vec3( 2.0 * time ), vec3( 100.0 ) ); ao = noise; vec3 newPosition = position + normal * vec3( displacement ); gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 ); }